In the figure, a non-conducting semi-circular rod of radius R has a total charge Q uniformly distributed along its length.

(a) What is the linear charge density, λ, of the rod?

(b) What is the direction of the electric field at the center of the circle O due to two elements of charge, dq, labeled in the figure symmetrically located at angle θ with respect to the y-axis?

(c) What is the magnitude of the electric field at O, due to these two infinitesimal charge elements (in terms of k, dq, R and θ)?

(d) Express dq in terms of R, $d\theta$ and the linear charge density λ. (Hint: What is the differential element of arc length, ds, subtended by dq in terms of R and $d\theta$?)

(e) Set up an integral for the magnitude of the total electric field at O due to the semi-circular line of charge, and evaluate it. Express your final answer in terms of k, Q and R.

![Diagram of a semi-circular rod with labeled charges and angles θ.]
(a) \[\lambda = \frac{\text{linear charge density}}{\text{total charge}} = \frac{\text{total charge}}{\text{total length}} = \frac{Q}{\frac{1}{2}(2\pi R)} = \frac{Q}{\pi R} = \frac{Q}{\text{length of semicircle}} \]

(b) Direction of the electric field due to infinitesimal charge elements \(Q_1 \) and \(Q_2 \) is entirely \(\hat{z} \) (see figure):

(c) \[dE_n + 0 = dE_x + dE_y = (dE_x \hat{i} - dE_y \hat{j}) + (dE_x \hat{i} - dE_y \hat{j}) \]

Now, \(|dE_i| = 1 \) and \(dE_x = dE_y \Rightarrow |dE| \sin \theta \)

\[dE_y = dE_x \cos \theta \]

So,
\[dE_n + 0 = 2|dE\| \cos \theta \hat{z} \]

\[= 2 \frac{kQ}{R^2} \cos \theta \hat{z} \]

Note: Infinitesimal element \(d\theta \) change gives rise to infinitesimal contribution to E-field at \(O \).

(d) \[dq = \lambda ds \]

\[\leftarrow \frac{\text{change in charge}}{\text{length}} \]

\[ds : \text{an length subtended by} \ dq = \frac{R \ d\theta}{\text{angle}} \]

\[\Rightarrow dq = \lambda R \ d\theta \]
(c) \[E_{a+0} = \int_{\text{semicircle}} dE_{a+0} \]

\[= \int_{\text{semicircle}} \frac{2k}{R^2} d\theta \cos \theta \left(\vec{\jmath} \right) \]

\[= \left(\frac{2k}{R^2} \right) \int_{0}^{\pi/2} \cos \theta \, d\theta \cdot \hat{\jmath} \]

Note: Integrate over \(\theta \in \left[0, \frac{\pi}{2} \right] \) since we have considered change pairs.

\[= \frac{2k}{R} \left(\frac{\pi}{2} \right) \sin \theta \bigg|^{\pi/2}_0 = 1 \]

\[= \frac{2k}{\pi R^2} \left(\vec{\jmath} \right) \]