(a) $Q = CV \Rightarrow C = \frac{Q}{V} = \frac{7.0 \times 10^{-12} \, C}{20 \, V} = 3.5 \times 10^{-12} \, F$

(b) The capacitance of a system of conductors depends on their geometry (size and shape of conductors and their separation). Therefore, keeping the geometry fixed, the capacitance remains unchanged.

(c) $V = \frac{Q}{C} = \frac{200 \times 10^{-12} \, C}{3.5 \times 10^{-12} \, F} = 57.1 \, V$

HRW 25.11

Before that happens, what is the change on C_1? Find C_{eq} first:

$C_{1, eq}$ in parallel: $C_{1, eq} = C_1 + C_2$

$C_{1, eq}$ in series: $C_{1, eq} = \frac{C_1 \cdot C_2}{C_1 + C_2}$

Change on C_{eq}: $\Delta V = \frac{V \cdot C_3 \cdot (C_4 + C_5)}{C_1 + C_2 + C_3}$

This is the same as the change on C_{eq} and C_2. Hence, the potential difference across C_{12} is:

$\Delta V = \frac{Q \cdot C_3 \cdot (C_4 + C_5)}{C_{12}} = \frac{V \cdot C_3 \cdot (C_4 + C_5)}{C_1 + C_2 + C_3}$

HRW 25.8

c_{12} and c_2 are in series (because $V_0 = V_a \neq V_2 = V_b$, i.e., the potential difference across C_1 and C_2 are not necessarily equal; in fact $V_a = V_b = (V_0 - V_a) + (V_c - V_b)$)

ΔV across C_1 and $C_2 = \Delta V$ across $C_1 + \Delta V$ across C_2

which is fine for capacitors in series.

$\Rightarrow \frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2} \Rightarrow \frac{1}{C_{12}} = C_1 + C_2 \Rightarrow C_{12} = \frac{C_1 \cdot C_2}{C_1 + C_2} = 10.5 \, \mu F$

c_{12} and c_2 are in parallel (because the potential difference across C_{12} is the same as that across C_2; points A and A' and C and C' are equivalent, and hence at the same potential): $C_{eq} = C_0 + C_3 = 3.3 \, \mu F$

$\Rightarrow C_{eq} = C_0 + C_3 = 3.3 \, \mu F$
\[AV_{\text{across } C_2} = AV_{\text{across } C_1} \text{ and } AV_{\text{across } C_3} \text{ which are in parallel. Therefore,} \]

\[Q_1 = AV_{\text{across } C_1} \cdot C_1 = \frac{V \cdot C_2}{C_1 + C_2 + C_3} \]

\[C_1 = \frac{V \cdot C_2}{C_1 + C_2 + C_3} \frac{C_1 + C_2 + C_3}{C_1 + C_2 + C_3} \]

When \(C_3 \) shunts out:

\[\frac{100 \cdot 4}{10 + 5 + 4} = \frac{400}{19} = 21.1 \mu C \]

\[AV'_{\text{across } C_1} = V \Rightarrow Q_1' = C_1 \cdot AV'_{\text{across } C_1} = C_1 \cdot V \]

\[= 10 \cdot 100 = 1000 \mu C \]

Therefore, \(Q_1' = Q_1 = 1000 - 211 = 789 \mu C \).

Before \(C_3 \) shunts out:

\[AV_{\text{across } C_1} = \frac{V \cdot C_2}{C_1 + C_2 + C_3} = \frac{100 \cdot 4}{10 + 5 + 4} = \frac{400}{19} = 21.1 \text{ V} \]

After \(C_3 \) shunts out:

\[AV'_{\text{across } C_1} = V = 100 \text{ V} \]

Therefore, \(AV' - AV = 100 - 21.1 = 78.9 \text{ V} \)
Hence, C_1 and C_2 are two capacitors in series. The equivalent capacitance is

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

where $C_1 = K_1 \cdot \frac{\varepsilon_o A}{d_1} = 11 \cdot \left(\frac{8.85 \times 10^{-12} \text{ F}}{m} \cdot \frac{7.89 \times 10^{-4} \text{ m}^2}{2.31 \times 10^{-3} \text{ m}} \right) = 11 \cdot \left(3 \times 10^{-12} \text{ F} \right) = 33 \text{ pF}$

$$C_2 = K_2 \cdot \frac{\varepsilon_o A}{d_2} = 12 \cdot \left(3 \times 10^{-12} \text{ F} \right) = 36 \text{ pF}$$

$$\Rightarrow C_{eq} = \frac{K_1 K_2 C_1^2}{(K_1 + K_2) C} = \frac{K_1 K_2}{K_1 + K_2} \left(\frac{2 \times 10^{-12} \text{ F}}{11 + 12} \right) = 17.2 \text{ pF}$$

First, find energy stored in fully charged capacitor:

$$U = \frac{1}{2} CV^2 = \frac{1}{2} \left(\frac{\varepsilon_o A}{d} \right) V_{bat}^2$$

When the capacitor is disconnected from the battery and pulled apart to a separation d', the quantity that is recharged is the change on the plates ($Q' = Q = CV_{bat}$):

$$U' = \frac{1}{2} \frac{Q'}{C'} = \frac{1}{2} \frac{Q^2}{C'} = \frac{1}{2} \left(\frac{CV_{bat}^2}{C'} \right) = \frac{1}{2} V_{bat}^2 \left(\frac{\varepsilon_o A / d}{\varepsilon_o A / d'} \right) = \frac{1}{2} V_{bat}^2 \frac{\varepsilon_o A}{d} \frac{d'}{d} = U \cdot \frac{d'}{d} = U$$

The new potential difference between the plates is

$$V' = \frac{Q' / C'}{C} = \frac{Q}{C'} = \frac{C V_{bat}}{C'} = \frac{\varepsilon_o A}{d} \frac{V_{bat}}{d'} = V_{bat} \cdot \frac{d'}{d}$$

(a) $V' = V_{bat} \cdot \frac{d'}{d} = (6 V) \cdot \frac{3 \text{ mm}}{9 \text{ mm}} = 16 V$

(b) $U = \frac{1}{2} \left(\frac{\varepsilon_o A}{d} \right) V_{bat}^2 = \frac{1}{2} \left(\frac{8.85 \times 10^{-12} \text{ F}}{m} \frac{8.5 \times 10^{-4} \text{ m}^2}{3 \times 10^{-3} \text{ m}} \right) (6 V)^2 = 4.5 \times 10^{-11} \text{ J}$
(c) \(W' = U \cdot \frac{1}{d} = \left(4.5 \times 10^{-11} \text{ J}\right) \cdot \frac{3 \text{ mm}}{3 \text{ mm}} \)

\[W' = 1.2 \times 10^{-10} \text{ J} \]

(d) \(W = U_f - U_i = U' - U = U \left(\frac{8}{3} - 1\right) = \frac{5}{3} U \)

\[W = 3.5 \times 10^{-10} \text{ J} \]

H&N 25-67] The stationary plates are all at the same potential, and the movable plates are also all at the same potential. Hence, the variable air-gap capacitor constitutes a parallel capacitor, where

\[C_{eq} = C_1 + C_2 + \ldots + C_n \]

The maximum capacitance is achieved when the movable plates are rotated such that the entire area \(A \) of each movable plate is adjacent to the corresponding area of the stationary plates:

\[C_{eff} = \varepsilon_0 A \frac{1}{d} \]

\[\Rightarrow C_{eq} = n \cdot C_1 = n \cdot \varepsilon_0 A \]

Given the geometry, 4 pairs of movable and stationary plates constitute 7 capacitors:

\[C_{eq} = 7 \varepsilon_0 A = 7 \left(8.85 \times 10^{-12}\right)\left(1.25 \times 10^{-9}\right) \approx 2.3 \times 10^{-12} \text{ F} \]
Note: That for capacitors in series, the charge stored on each capacitor is the same, and equal to the charge stored on the equivalent capacitor:

\[
\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{C_1 + C_2}{C_1C_2} \Rightarrow C_{eq} = \frac{C_1C_2}{C_1 + C_2}
\]

\[
Q = C_{eq}V = \frac{C_1C_2V}{C_1 + C_2} = 2.8 (800) = 480 \mu C
\]

The potential difference across the capacitor is the same:

\[
\frac{\Delta V'_{across C_1}}{\Delta V'_{across C_2}} = \frac{Q_1'}{Q_2'} = \frac{\frac{Q_1}{C_1}}{\frac{Q_2}{C_2}} \quad (2)
\]

Solving (1) and (2) for \(Q_1'\) and \(Q_2'\):

\[
\begin{align*}
(a) \quad \text{change on } C_1: & \quad Q_1 = Q = 480 \mu C \\
(b) \quad \Delta V_{across C_1} = \frac{Q_1}{C_1} = \frac{480 \mu C}{2 \mu F} = 240 V \\
(c) \quad \text{change on } C_2: & \quad Q_2 = Q = 480 \mu C \\
(d) \quad \Delta V_{across C_2} = \frac{Q_2}{C_2} = \frac{480 \mu C}{8 \mu F} = 60 V
\end{align*}
\]

The charged capacitors are disconnected from the battery and connected to each other with plates of the same sign wired together:

\[
\Delta V'_{across C_1} = \frac{Q_1}{C_1} = \frac{768 \mu C}{8 \mu F} = 96 V = \Delta V'_{across C_1}
\]

Once the switch is closed, charges \(Q_1' + Q_2' = Q + Q = 2Q\) redistribute among the top two plates, with \(Q_1'\) on \(C_1\) and \(Q_2'\) on \(C_2\). Similarly, the charge on the bottom plate redistribute, with \(-Q_1'\) on \(C_1\) and \(-Q_2'\) on \(C_2\). We have:

\[
Q_1' + Q_2' = 2Q \quad (1)
\]

The potential difference across the capacitors is the same:

\[
\frac{\Delta V'_{across C_1}}{\Delta V'_{across C_2}} = \frac{Q_1'}{Q_2'} \quad (2)
\]

Solving (1) and (2) for \(Q_1'\) and \(Q_2'\):

\[
\begin{align*}
(a) \quad Q_1' + Q_2' = 2Q \Rightarrow Q_1' = \frac{2Q}{1 + \frac{C_2}{C_1}} = \frac{2 \times 480 \mu C}{1 + \frac{8}{2}} = 192 \mu C \\
(b) \quad \Delta V'_{across C_1} = \frac{Q_1'}{C_1} = \frac{192 \mu C}{2 \mu F} = 96 V \\
(c) \quad Q_2' = 2Q - Q_1' = 2 \times 480 - 192 = 768 \mu C \\
(d) \quad \Delta V'_{across C_2} = \frac{Q_2'}{C_2} = \frac{768 \mu C}{8 \mu F} = 96 V = \Delta V'_{across C_2}
\end{align*}
\]

If the charged capacitors are instead disconnected from the battery and connected to each other with plates of the opposite sign wired together:
\[Q_1 + (-Q_2) = Q + (-Q) = 0 \]

They will discharge: the charge on the plates will be zero, and the potential difference across the plates will be zero.

1) \(Q'_1 = 0 \)
2) \(\Delta V' \text{ across } C_1 = 0 \)
3) \(Q'_2 = 0 \)
4) \(\Delta V' \text{ across } C_2 = 0 \)