Lab #7: Linear Polarization

Goal:
Explore linear polarization and Malus’ Law

Equipment:
Optical bench with incandescent lamp, three Polaroid filters and photometer

1. **physics**

Unpolarized light (of intensity I_{up}) can be viewed as a superposition of two linearly polarized, *incoherent* waves (of intensity $I_{up}/2$) with orthogonal E-vectors. Polaroid filters (PF) pass only waves which have their E-vector in a certain direction, the ‘transmission axis’. After a PF with transmission axis in the y-direction, unpolarized light has become linearly polarized with amplitude E_0, since only half the intensity passes the PF. Linearly polarized light can be viewed as a superposition of two linearly polarized, *coherent* waves with orthogonal E-vectors, $E_{0,a}$ and $E_{0,b}$. If this light traverses a second PF with its transmission axis at an angle θ, only the $E_{0,b}$ component is passed. Since intensity is proportional to the square of the amplitude, the intensity I_1 after the second PF is

$$I_1 = I_0 \cos^2 \theta \quad .$$

This is known as Malus’ Law (Hecht, eq.8.24).

Question: Assume that you have arranged two PFs (PF_1 and PF_2) with orthogonal transmission axes, such that no light passes. Now you introduce a third PF (PF_3) *between* the other two. The transmission axis of PF_3 is at an angle θ with respect to that of PF_1. What is the transmitted intensity as a function of θ?

2. **measurements**

<table>
<thead>
<tr>
<th>incandescent lamp</th>
<th>PF_1</th>
<th>PF_2</th>
<th>light sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1 **Malus’ Law**
- Set up the incandescent lamp and the light sensor but first omit the polarizers. Measure the intensity of the light (I_{up}).
- Now put PF_1 into place and measure the intensity for several orientations of its transmission axis. Does the intensity depend on the orientation of PF_1?
- Orient the transmission axis of PF_1 to be vertical. Put PF_2 into place and measure the intensity as a function of the angle θ between transmission axes of PF_1 and PF_2.

2.2 Analysis 1
Enter the data in a spreadsheet and plot $I(\theta)$ versus θ. In order to test Malus’ Law, fit the data with the expression

$$I(\theta) = a + b \cos^2 \theta.$$ \hspace{1cm} (2)

Determine the constants a and b. What is the physical significance of these constants?

2.3 Three polarizers
Orient PF$_1$ and PF$_2$ such that their transmission axes are orthogonal, i.e., such that no light passes through. Now, introduce a third PF$_3$ between them. Measure the transmitted intensity as a function of the angle θ of the transmission axis of PF$_3$ with respect to that of PF$_1$.

2.4 Analysis 2
Enter the data in a spreadsheet and plot versus θ. Fit the data with the expression that you were asked to derive in sect.1.

3 Questions
- Estimate the error in measuring the intensity of the light with no polarizers, with one polarizer, with two polarizers.
- The polarizers are calibrated with a scale in degrees. Can you think of a way to check the angle scale?
- Estimate the error of the angle θ between the transmission axes of two polarizers.
- How would you try to reduce the constant a in analysis 1?
- Would the experiment be improved by using lenses to focus the light path from the lamp to the light sensor?