Course: Classical Mechanics
Physics 521, Fall 2013
M,W,F: 10:10 - 11:00, Swain West 218

Instructor: Radovan Dermisek
email: dermisek@indiana.edu
office: Swain West 225
office hours: when I am in and by appointment
phone: (812) 856 6918
website: http://www.physics.indiana.edu/~dermisek/
Text: A.L. Fetter and J.D. Walecka, Theoretical Mechanics of Particles and Continua

Chapters: 1-6 in detail; others time permitting

Other useful books:

L.D. Landau and E.M. Lifshitz, Mechanics
H. Goldstein, C.P. Poole and J.L. Safko, Classical Mechanics
J.R. Taylor, Classical Mechanics (undergrad level)
Chapter 1 Basic Principles
 1 Newton’s Laws
 Statement of Newton’s Laws
 Conservation Laws
 2 Systems of Particles
 Center-of-Mass Motion
 Angular Momentum
 Energy
 3 Central Forces
 Conservation Laws
 Effective Potential
 Inverse-Square Force: Kepler’s Laws
 4 Two-Body Motion with a Central Potential
 5 Scattering
 Hyperbolic Orbits in Gravitational Potential
 General Scattering Orbits
 Cross Section
 Rutherford Scattering
 Scattering by a Hard Sphere

Chapter 2 Accelerated Coordinate Systems
 6 Rotating Coordinate Systems
 7 Infinitesimal Rotations
 8 Accelerations
 9 Translations and Rotations
10 Newton’s Laws in Accelerated Coordinate Systems
11 Motion on the Surface of the Earth
 Particle on a Scale
 Falling Particle
 Horizontal Motion
12 Foucault Pendulum
Chapter 3 Lagrangian Dynamics
 13 Constrained Motion and Generalized Coordinates
 Constraints
 Generalized Coordinates
 Virtual Displacements
 14 D’Alembert’s Principle
 15 Lagrange’s Equations
 16 Examples
 Pendulum
 bead on a Rotating Wire Hoop
 17 Calculus of Variations
 18 Hamilton’s Principle
 19 Forces of Constraint
 Pendulum
 Atwood’s Machine
 One Cylinder Rolling on Another
 20 Generalized Momenta and the Hamiltonian
 Symmetry Principles and Conserved Quantities
 The Hamiltonian

Chapter 4 Small Oscillations
 21 Formulation
 22 Normal Modes
 Simplest Case
 Coupled Problem: Formulation
 Linear Equations: A Review
 Coupled Problem: Eigenvectors and Eigenvalues
 Coupled Problem: General Solution
 Matrix Notation
 Modal Matrix
 Normal Coordinates
 23 Example: Coupled Pendulums
 24 Example: Many Degrees of Freedom
 Two N-Body Problems
 Normal Modes
 25 Transition from Discrete to Continuous Systems
 Passage to the Continuum Limit
 Direct Treatment of a Continuous String
 General Solution to the Wave Equation with Specified Initial Conditions
 Lagrangian for a Continuous String
 Normal Coordinates
 Hamilton’s Principle for Continuous Systems
Chapter 5 Rigid Bodies
 26 General Theory
 Motion with One Arbitrary Fixed Point
 General Motion with No Fixed Point
 Inertia Tensor
 Principal Axes
 27 Euler’s Equations
 28 Applications
 Compound Pendulum: Kater’s Pendulum and the Center of Percussion
 Rolling and Sliding Billiard Ball
 Torque-free Motion: Symmetric Top
 Torque-free Motion: Asymmetric Top
 29 Euler Angles
 30 Symmetric Top: Torque-free Motion
 Equations of Motion and First Integrals
 Description of Motion in Inertial Frame
 31 Symmetric Top: One Fixed Point in a Gravitational Field
 Dynamical Equations
 Effective Potential
 Small Oscillations about Steady Motion

Chapter 6 Hamiltonian Dynamics
 32 Hamilton’s Equations
 Review of Lagrangian Dynamics
 Hamiltonian Dynamics
 Derivation of Hamilton’s Equations from a Modified Hamilton’s Principle
 33 Example: Charged Particle in an Electromagnetic Field
 34 Canonical Transformations
 35 Hamilton-Jacobi Theory
 36 Action-Angle Variables
 37 Poisson Brackets
 Basic Formulation
 Transition to Quantum Mechanics
Notes: available on my website.

Homework: there will be assignments about every week. Unless specified otherwise, they will be due exactly one week after they are assigned (typically on Wednesdays).

Late Assignments: Start work early on the assignment. No late homework will be accepted without my prior consent.

Grader: TBD

office: Swain West TBD

email: tbd@indiana.edu
Exams: there will be two exams: a midterm exam and a final exam. The final exam will cover all material presented in lecture, discussed in the text, or included in the homework problems.

Grades: the course grade will be weighted as follows:
- homework = 50%,
- midterm exam = 25%,
- final exam = 25%.
Letter grades will not be assigned to the exams or the homework.
Advice: work hard from the first day; study till you can derive every single formula; think about the meaning of equations you are deriving; think about applications; solve as many problems as possible.

Attendance: optional but highly recommended.

Academic honesty: I encourage you to discuss physics with your colleagues. It is an excellent way to learn. You can also discuss homework assignments with others in the class. However you are expected to write your own solutions!

Have Fun!!!