
Plan for the rest of the semester

ϕ ψa

ϕ(x)→ e−iα(x)ϕ(x)
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it suggests, we could define a vector field that would transform as:

Representations of Lorentz Group
based on S-33

We defined a unitary operator that implemented a Lorentz transformation 
on a scalar field:

and then a derivative transformed as:

and a tensor field            that would transform as:
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for symmetric                              and antisymmetric                    

tensors, the symmetry is preserved by Lorentz transformations.

In addition, the trace                               transforms as a scalar:

Thus a general tensor field can be written as:

antisymmetric     symmetric and traceless

where different parts do not mix with each other under LT!

trace
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matrices that depend on      ,
they must obey the group composition rule

How do we find the smallest (irreducible) representations of the 
Lorentz group for a field with n vector indices?

Let’s start with a field carrying a generic Lorentz index:

we say these matrices form a representation of the Lorentz group.
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Lie algebra of the Lorentz group

For an infinitesimal transformation we had:

or in components (angular momentum and boost),

where the generators of the Lorentz group satisfied:

we have found:
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In a similar way, for an infinitesimal transformation we also define:

and we find:
comparing linear terms in 

also it is possible to show that          and                 obey the same 
commutation relations as the generators

not necessarily hermitian
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How do we find all possible sets of matrices that satisfy   ?

the first one      is just the usual set of commutation relations for angular 
momentum in QM:

for given j (0, 1/2, 1,...) we can find three (2j+1)x(2j+1) hermitian 
matrices      ,         and       that satisfy the commutation relations and the 
eigenvalues of      are  -j, -j+1, ..., +j.              

such matrices constitute all of the inequivalent, irreducible representations 
of the Lie algebra of SO(3)

equivalent to the Lie algebra of SU(2)

not related by a unitary transformation

cannot be made block diagonal
by a unitary transformation
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since                       ,for given n and n’ the allowed values of j are

there are                      different components of a representation

Crucial observation:

The Lie algebra of the Lorentz group splits into two different SU(2) Lie 
algebras that are related by hermitian conjugation! 

A representation of the Lie algebra of the Lorentz group can be specified 
by two integers or half-integers:

they can be labeled  by their angular momentum representations:

(the standard way to add angular momenta , each value appears exactly once)
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The simplest representations of the Lie algebra of the Lorentz group are:

scalar or singlet
left-handed spinor

right-handed spinor

vector

j = 0  and 1
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Left- and Right-handed spinor fields

Let’s start with a left-handed spinor field  (left-handed Weyl field)           :

based on S-34

left-handed spinor index
under Lorentz transformation we have:

matrices in the (2,1) representation,

that satisfy the group composition rule:

For an infinitesimal transformation we have:
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Using

we get

present also for a scalar field 
to simplify the formulas, we can evaluate everything at space-time origin,          

and since                   , we have:

standard convention
so that for i=1 and j=2:
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Once we set the representation matrices for the angular momentum 
operator, those for boosts                  follow from:

     do not contribute when acting on a field in (2,1) representation and so 
the representation matrices for       are i times those for       :          
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Let’s consider now a hermitian conjugate of a left-handed spinor field        
(a hermitian conjugate of a (2,1) field should be a field in the (1,2) 
representation) = right-handed spinor field (right-handed Weyl field)

we use dotted indices to distinguish (2,1) from (1,2)!

under Lorentz transformation we have:

matrices in the (1,2) representation,

that satisfy the group composition rule:

For an infinitesimal transformation we have:
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in the same way as for the left-handed field we find:

taking the hermitian conjugate,

we find:
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Let’s consider now a field that carries two (2,1) indices.

Under Lorentz transformation we have:

Can we group 4 components of C into smaller sets that do not mix under 
Lorentz transformation?

Recall from QM that two spin 1/2 particles can be in a state of total spin 0 
or 1:

3 symmetric  spin 1 states1 antisymmetric spin 0 state

Thus for the Lorentz group we have:

and we should be able to write:
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D is a scalar

is an invariant symbol of the Lorentz group
(does not change under a Lorentz 

transformation that acts on all of its indices)

similar to

We can use it, and its inverse to raise and lower left-handed spinor indices:

to raise and lower left-handed spinor indices:
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We also have:

Exactly the same discussion applies to two (1,2) indices:

we have to be careful with the minus sign, e.g.:

or when contracting indices:

with         defined in the same way as        :                        , .....
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Finally, let’s consider a field that carries one undotted and one dotted index;

it is in the (2,2) representation (vector):

more natural way 
to write a vector field

dictionary  between the two notations
it is an invariant symbol,

we can deduce its existence from 

A consistent choice with what we have already set for         and          is:  

homework
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In general, whenever the product of a set of representations includes the 
singlet, there is a corresponding invariant symbol, 

e.g. the existence of                 follows from  

another invariant symbol we will use is completely antisymmetric Levi-
Civita symbol:

                                 is antisymmetric on exchange of any two of its uncontracted 
indices, and therefore must be proportional to            , the constant of 
proportionality is             which is +1 for proper Lorentz transformations.
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antisymmetric      symmetric and traceless

trace

Comparing the formula for a general field with two vector indices 

with 

we see that A is not irreducible and, since (3,1) corresponds to a 
symmetric part of undotted indices,

we should be able to write it in terms of G and its hermitian conjugate.

see  Srednicki
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Fun with spinor indices

invariant symbol for raising and lowering spinor indices:

based on S-35

another invariant symbol:

Simple identities:

proportionality constants 
from direct calculation
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from                                   :  

for an infinitesimal transformation we had:

What can we learn about the generator matrices            from invariant 
symbols?

and we find:

similarly:
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from                                       :  

for infinitesimal transformations we had:

isolating linear terms in           we have:

multiplying by          we have: 
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consistent with our previous choice! (homework)

we find:

multiplying by          we get: 

similarly, multiplying by          we get: 

let’s define:
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Convention:

missing pair of contracted indices is understood to be written as:

thus, for left-handed Weyl fields we have:

spin 1/2 particles are fermions that anticommute:
the spin-statistics theorem (later)

and we find:

= -
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for hermitian conjugate we find:

spin 1/2 particles are fermions that anticommute:
the spin-statistics theorem (later)

and we find:

= -

as expected if we ignored indices

and similarly:

we will write a right-handed field always with a dagger!

192

Let’s look at something more complicated:

it behaves like a vector field under Lorentz transformations:

the hermitian conjugate is:
evaluated at

is hermitian
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