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Abstract 
I discuss the cognitive impact of introductory calculus courses after the initiation of the NSF’s calculus 
reform program in 1987. Topics discussed are: 

(a) What’s calculus? 
(b) Calculus, language of nature and gateway to science, technology, engineering, and 
       mathematics. 
(c) A typical calculus-course problem (even dogs can solve it). 
(d) NSF’s calculus reform effort, initiated in 1987. 
(e) Assessments bemoan the lack of evidence of improved student learning. 
(f) A glimmer of hope – the Calculus Concept Inventory (CCI). 
(g) Typical question of the CCI type (dogs score at the random guessing level). 
(h) Impact of the CCI on calculus education – early trials. 
(i) Conclusion. 
(j) Appendix #1: The Lagrange Approach to Calculus. 
(k) Appendix #2: Math Education Bibliography. 

 
I conclude that Epstein’s CCI may stimulate reform in calculus education, but, judging from 
the physics education reform effort, it may take several decades before widespread improvement occurs  - 
see the review “The Impact of Concept Inventories On Physics Education and Its Relevance For Engineering 
Education” [Hake (2011c)] at <http://bit.ly/nmPY8F> (8.7 MB).  
 
 
 
 
 
 
 
 
 
 
 
__________________________________________________ 
† The reference is: Hake, R.R. 2013. “Can the Cognitive Impact of Calculus Courses be Enhanced?” An  
update of 26 Dec 2013 of an invited talk of 24 April 2012, Department of Mathematics, University of 
Southern California, online as ref. 70 at <http://bit.ly/a6M5y0>.  
 
© Richard R. Hake, 26 Dec 2013. Partially supported by NSF Grant DUE/MDR-9253965. Permission to 
copy or disseminate all or part of this material is granted provided that the copies are not made or distributed 
for commercial advantage, and the copyright and its date appear. To disseminate otherwise, to republish, or 
to place this article at another website [instead of linking to <http://bit.ly/a6M5y0>] requires written 
permission. Error spottings, comments, and criticisms are welcome at <rrhake@earthlink.net>. 
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Prologue 
 “Mathematics is the gate and key of the sciences. . . .Neglect of mathematics works injury to all 
knowledge, since he who is ignorant of it cannot know the other sciences or the things of this world. And 
what is worse, men who are thus ignorant are unable to perceive their own ignorance and so do not seek a 
remedy.”   
          - Roger Bacon (Opus Majus, bk. 1, ch. 4) <http://bit.ly/dzjbWv> 
 
 “To those who do not know mathematics it is difficult to get across a real feeling as to the beauty, the 
deepest beauty, of nature ... If you want to learn about nature, to appreciate nature, it is necessary to 
understand the language that she speaks in.” 
         - Richard Feynman (1965, 1994) Ch. 2 

 
A. What's Calculus? 

1. From Wikipedia* (2013a) at <http://bit.ly/1cbtuDg> (numbered references and some covert links 
have been eliminated): 

“Calculus is the mathematical study of change, in the same way that geometry is the study of shape 
and algebra is the study of operations and their application to solving equations. It has two major 
branches, differential calculus <http://bit.ly/JC9KfK> (concerning rates of change and slopes of 
curves), and integral calculus <http://bit.ly/J5sG60> (concerning accumulation of quantities and the 
areas under curves); these two branches are related to each other by the fundamental theorem of 
calculus <http://bit.ly/1c13A3u>. Both branches make use of the fundamental notions of convergence 
of infinite sequences <http://bit.ly/1bdAI3s> and infinite series <http://bit.ly/1eoytlK> to a well-
defined limit <http://bit.ly/1cR8EaQ>. Generally considered to have been founded in the 17th century 
by Isaac Newton <http://bit.ly/1hlBlOe> and Gottfried Leibniz <http://bit.ly/1kVEDHI>, today 
calculus has widespread uses in science, engineering and economics and can solve many problems that 
algebra alone cannot. 
Calculus is a major part of modern mathematics education <http://bit.ly/19cYe6J>. A course in 
calculus is a gateway to other, more advanced courses in mathematics devoted to the study of functions 
and limits, broadly called mathematical analysis. Calculus has historically been called ‘the calculus of 
infinitesimals’, or ‘infinitesimal calculus’. The word ‘calculus’ comes from Latin (calculus) and refers 
to a small stone used for counting. More generally, calculus (plural calculi) refers to any method or 
system of calculation guided by the symbolic manipulation of expressions. Some examples of other 
well-known calculi are propositional calculus, calculus of variations, lambda calculus, and process 
calculus.” 

 
2. From Encyclopedia of Mathematics [West et al. (1982)] 

“Calculus is a branch of higher mathematics that deals with variable, or changing, quantities. . . . . . . . . 
. . . . based on the concept of infinitesimals (exceedingly small quantities) and on the concept of limits 
(quantities that can be approached more and more closely but never reached).”  

 
 
 
 
 

______________________________________________________ 
* Those who dismiss Wikipedia entries as a mere “opinion pieces,” may not be aware that a study by Nature 
[Giles (2005)] indicated that Wikipedia comes close to Britannica in terms of the accuracy of its science 
entries – see e.g. “In Defense of Wikipedia” [Hake (2009c)]. 
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3. “Calculus” Means Different Things to Different People 
David Tall (1993) in  “Students’ Difficulties in Calculus” wrote [bracketed by lines “TTTTT. . . .”:  

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 
It should be emphasized that the Calculus means a variety of different things in different countries 
in a spectrum from: 

a. informal calculus – informal ideas of rate of change and the rules of differentiation 
     with integration as the inverse process, with calculating areas, volumes etc. as 
     applications of integration, to 
b. formal analysis – formal ideas of completeness, ε-δ definitions of limits,   
      continuity, differentiation, Riemann integration, and formal deductions of theorems 
      such as mean-value theorem, the fundamental theorem of calculus, etc., with a 
      variety of more recent approaches including: 

(1) infinitesimal ideas based on non-standard analysis, 
(2) computer approaches using one or more of the graphical, numerical, symbolic 
      manipulation facilities with, or without, programming. . . . . . . 

 
In some countries the first of these is taught in secondary school and the second to mathematics 
majors in college. In others a subject somewhere along the spectrum between the two is taught as 
the first major college mathematics course. In a few countries (e.g. Greece), the formal ideas are 
taught from the beginning in secondary school. 
 
The details of these approaches, the level of rigour . . . . [[my italics, see section “A3” below]]. . . , 
the representations (geometric, numeric, symbolic, using functions or independent and dependent 
variables). . . . [[the reform calculus texts by Hughes-Hallet et al. (2008, 2009) ‘use all strands of 
the ‘Rule of Four’ - graphical, numeric, symbolic/algebraic, and verbal/applied presentations - to 
make concepts easier to understand’]]. . . . . , the individual topics covered, vary greatly from course 
to course. . . . .  
 
The calculus represents the first time in which the student is confronted with the limit concept, 
involving calculations that are no longer performed by simple arithmetic and algebra, and infinite 
processes that can only be carried out by indirect arguments. Teachers often attempt to circumvent 
the problems by using an “informal” approach playing down the technicalities. . . . [[see e.g., 
Calculus: An Intuitive and Physical Approach (Kline(1967, 1998)]]. . . . However, whatever method 
is used, a general dissatisfaction with the calculus course has emerged in various countries round 
the world in the last decade. . . . . [[My italics.]]. . . . . . 
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 
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4. Level of Rigor As Judged By Definitions of Continuity in Some Standard Sources†   
  a. Wikipedia* (2013b)  <http://bit.ly/LoAz5S> - paraphrased [bracketed by lines WWWW. . . .”]:  

WWWWWWWWWWWWWWWWWWWWWWWWW 
A function from the set of real numbers can be represented by a graph in the Cartesian plane; the 
function is continuous if, roughly speaking, the graph is a single unbroken curve with no “holes” or 
“jumps.” There are several ways to make this intuition mathematically rigorous. These definitions 
are equivalent to one another, so the most convenient definition can be used to determine whether a 
given function is continuous or not.  

 
a. Consider f :  I → R,  

A function defined on a subset I of the set R of real numbers. This subset I is referred to as the 
domain of f. Possible choices include  

 
 (1) I = R, the whole set of real numbers;  

 

 (2) an open interval I  = (a,b) = {x ∈ R | a < x < b }; or 
 

 (3) a closed interval I  = [a,b] = {x ∈ R | a ≤ x ≤ b }; 
 

where  a and b are real numbers. 
 

b. In terms of limits of functions: lim x→c f (x) = f (c). 
In detail this means three conditions: first,  f has to be defined at c. Second, the limit on the left 
hand side of that equation has to exist. Third, the value of this limit must equal f(c). The function 
f is said to be continuous if it is continuous at every point of its domain. If the point c in the 
domain of f is not a limit point of the domain, then this condition is vacuously true, since x 
cannot approach c through values not equal c. Thus, for example, every function whose domain 
is the set of all integers is continuous.  

 

c. The Weierstrass definition§ (epsilon-delta) of continuous functions:  
Given a function f :  I → R defined on a  subset I of the real numbers, and an element c of the 
domain I, ƒ is said to be continuous at the point c if the following holds: For any number ε > 0, 
however small, there exists some number δ > 0 such that for all x in the domain of ƒ with 
c − δ < x < c + δ, the value of ƒ(x) satisfies 

 

 f(c) – ε  <  f(x) < f(c) + ε  
 

Alternatively written, continuity of ƒ : I → D at c ∈ I means that for every ε > 0 there exists a 
δ > 0 such that for all x ∈ I: 
| x – c |  < δ →  | f(x) -  f(c) | < ε 
 

______________________________________________________________________ 
† Definitions of continuity not considered here are, among others, those in the following well regarded texts: 
Apostol (1967), Brown et al. (1991), Callahan et al. (1995), Hilbert et al. (1994), McCallum et al. (2002, 
2008), Meridith et al. (2012) 
 
* Those who dismiss Wikipedia entries as a mere “opinion pieces,” may not be aware that a study by Nature 
[Giles (2005)] indicated that Wikipedia comes close to Britannica in terms of the accuracy of its science 
entries – see e.g. “In Defense of Wikipedia” [Hake (2009c)]. 
 
§ For a thorough treatment of Weierstrass’ approach see e.g., Courant & John (1965, 1998).  
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More intuitively, we can say that if we want to get all the ƒ(x) values to stay in some small 
neighborhood around ƒ(c), we simply need to choose a small enough neighborhood for the x 
values around c, and we can do that no matter how small the ƒ(x) neighborhood is; ƒ is then 
continuous at c. 
 
Pictorially: 

                                               
WWWWWWWWWWWWWWWWWWWWWWWWW 

 
 
b. Unified Calculus [Smith, Salkover, & Justice (1947)] [a traditional text used by Paul Halmos 
<http://en.wikipedia.org/wiki/Paul_Halmos> as a student and later admired by him [Halmos (1988)], 
page 4: 

“A single-valued function f(x) is said to be continuous for x = a if f(x) is defined for x = a, and for 
all values of x in a range extending on both sides of x = a, and if  lim x→a f(x) = f(a).” 

 
c. Calculus: Single and Multivariable [Hughes-Hallet et al. (2008)] (a product of NSF’s 1987  
   calculus reform program):  

(1) page 47: “Roughly speaking, a function is said to be continuous on an interval if its graph has no 
breaks, jumps, or holes in that interval. . . . . A continuous function has a graph which can be drawn 
without lifting the pencil from the paper.”   
 
 (2) page 56: “a function f is continuous at x = c if f(x) is defined at x = c and if  
lim x→c f(x) = f(c). In other words, f(x) is as close as we want to f(c) provided x is close enough to 
c. The function is continuous on an interval [a,b] if it is continuous at every point in the interval.”  
 

d. Basic Calculus: From Archimedes to Newton to its Role in Science [Hahn 
    (1998)] (a historically oriented text for non-science/math majors), page 212: 

“The algebraic conditions for a function y = f(x) to be continuous at a number (or point) c on the x 
axis are: (i) f(c) makes sense. In other words c is in the domain of f and  
(ii) lim x→ c f(x) = f(c). ”   
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e. Calculus: An Intuitive and Physical Approach [Kline, 1967, 1989)] (an early   
     reform text), page 116-117 of the 1967, 1989 edition): 

 “One of these properties [that ∆y/∆x approaches a limit] is that ∆y must approach 0 as ∆x does. 
This is known as the property of continuity. . . . .We can best understand what continuity means 
if we consider the graphs of functions. In graphical terms a function is continuous if the curve 
can be drawn with one uninterrupted motion of a pencil.”  

And on pages 117-118, Kline discuses the continuity of functions such as f2 (see below) 
which are continuous everywhere except at one point (for f2 at x = 0). 

 
4. Students' Understanding of Continuity 

David Tall (1990) in “Inconsistencies in the Learning of Calculus and Analysis” discusses student 
responses to this question: 

                              
                                       Which of the above functions are continuous?  
 

Note that 35 out of 41 students (85%) thought that f2 (x) = 1/x (x ≠ 0) was discontinuous (wrong); 
12 out 41 (29%) thought that f3(x) was discontinuous (wrong); and 8 out of 41 students (20%) 
thought f5 was continuous (wrong) :-( .  Regarding f2 , Tall (1990, p. 6) wrote (correcting an 
apparent typo): “The function f2 often causes dispute even amongst seasoned mathematicians. It is 
continuous according to the ε−δ definition on the domain {x ∈ I = R | x ≠ 0}.”   

But students blindly following Kline’s, “a function is continuous if the curve can be drawn with 
one uninterrupted motion of a pencil” and not noticing the exclusion of f2 at x = 0 might indicate 
that f2 is discontinuous.  
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5. Calculus and Newtonian Mechanics 
In  “Helping Students to Think Like Scientists in Socratic Dialogue Inducing Labs” [Hake (2012b)] I 
wrote [bracketed by lines “HHHHH. . . . .”]: 

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 
(a) We agree with The Mechanical Universe [MU (2012), Goodstein & Olenick (1998), Frautschi et 
al. (2008)] standpoint that it is almost impossible to understand terms such as “velocity” and 
“acceleration” without some knowledge of the basic ideas of differential calculus. Thus, in our 
view, the appellation “non-calculus physics text” is a contradiction in terms. Authors of effective 
“non-calculus” physics texts must negate their own “non-calculus” claims: most of them give an 
expression for instantaneous velocity in one dimension: v = lim∆t →0 (∆x/∆t) = (dx/dt)) but omit 
the right-hand side of this equation (the identification of the derivative “dx/dt”), possibly because 
they fear it might frighten students and/or jeopardize their book’s position as a “non-calculus’ text.” 

 
 (b) Although about 70% of students entering the non-calculus-based Indiana University (IU) 
introductory physics course have completed a university calculus course, almost none seems to have 
the foggiest notion of the graphical meaning of a derivative or integral, as addressed in this section. 
Similar calculus illiteracy is commonly found among students in calculus-based introductory 
physics courses at IU. In my judgment, these calculus interpretations are essential to the crucial 
operational definitions of instantaneous position, velocity, and acceleration: the term “substantive 
non-calculus-based mechanics course” is an oxymoron. 
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 
 

6. Calculus and “Physics First” 
In “Re: Do not pass this by: Seventeen very well-spent minutes with Conrad W” [Hake (2010a)], I 
wrote:  

“Because of its computational complexity, calculus has traditionally been taught very late; but by 
using computers, calculus concepts are amenable to a much younger age group. In my opinion, 
programs such as Wolfram's ‘Computer-based Math’  <http://bit.ly/h7V2jX> and the Kaput 
Center’s (2013) ‘Simulations of various time-based models (e.g., Position/Velocity, Finance)’ 
<http://bit.ly/YDxSTw>, if used in K-8, can pave the way for the education of ninth graders in the 
basic ideas of Newtonian mechanics - thus facilitating Leon Lederman's (2001) ‘Physics First’. ” 

 
Regarding the Kaput Center’s work see “The SimCalc Vision and Contributions: Democratizing 
Access to Important Mathematics” [Hegedus & Roschelle (2013)], “Democratizing access to 
Calculus: New routes using old routes” [Kaput (1994), and “The Evolution of Technology and the 
Mathematics of Change and Variation” [Tall (2013)] 
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B. Calculus – Language of Nature* and Gateway to Science, Technology, Engineering,  
    & Mathematics 

1. High School 
a. MAA/NCTM Recommends De-emphasis of Calculus 
 MAA/NCTM (2012) Joint Statement on Calculus [my italics]: “Although calculus can play an 
important role in secondary school, the ultimate goal of the K–12 mathematics curriculum should not 
be to get students into and through a course in calculus by twelfth grade but to have established the 
mathematical foundation that will enable students to pursue whatever course of study interests them 
when they get to college. The college curriculum should offer students an experience that is new and 
engaging, broadening their understanding of the world of mathematics while strengthening their 
mastery of tools that they will need if they choose to pursue a mathematically intensive discipline.” For 
an assessment of high-school calculus see “Meeting The Challenge Of High School Calculus. . . . .” 
[Bressoud (2010a,b,c,d,e,f,g)] 

 
2. College and University 

a. Calculus Required for STEM Majors 
Despite the MAA/NCTM de-emphasis of high-school calculus, as far as I’m aware (please correct 
me if I’m wrong) a college-level course in calculus (or equivalent) is required for nearly all students 
who major in STEM disciplines, as well it should be considering that Calculus is the Language of 
Nature.* Therefore the cognitive impact of university calculus courses should be a national concern. 

 
b. PCAST Report  - Suggests Undergraduate Math Course Not Be Taught by Mathematicians   

Recommendation #3 of the PCAST (2012) report (page vi) is “Launch a national experiment in 
postsecondary mathematics education to address the mathematics-preparation gap.” Among actions 
recommended (page vii) are “Support a national experiment in mathematics undergraduate 
education at NSF, the Department of Labor, and the Department of Education” [including, my 
italics]. . . . . college mathematics teaching and curricula developed and taught by faculty from 
mathematics-intensive disciplines other than mathematics, including physics, engineering, and 
computer science.” 

(1) Note that there are no mathematicians among the “President's Council of Advisors on 
Science and Technology” as listed on the initial pages of PCAST (2012).  According to a Notice 
<http://1.usa.gov/MtviIF> of 3 May 2012 on the Federal Register:  

“The President's Council of Advisors on Science and Technology (PCAST) is an advisory 
group of the nation's leading scientists and engineers, appointed by the President to augment 
the science and technology advice available to him from inside the White House and from 
cabinet departments and other Federal agencies. See the Executive Order at 
<http://www.whitehouse.gov/ostp/pcast>. PCAST is consulted about and provides analyses 
and recommendations concerning a wide range of issues where understandings from the 
domains of science, technology, and innovation may bear on the policy choices before the 
President. PCAST is co-chaired by Dr. John P. Holdren, Assistant to the President for Science 
and Technology, and Director, Office of Science and Technology Policy, Executive Office of 
the President, The White House; and Dr. Eric S. Lander, President, Broad Institute of the 
Massachusetts Institute of Technology and Harvard.” 

 
 
__________________________________________________ 
* A sage designation borrowed from the Chapter 3 title of The Mechanical Universe: Mechanics and Heat  
[Frautschi et al. (2008)].  
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(2) Mathematician David Bressoud (2012), in his MAA Launchings column “On Engaging to 
Excel” summed up the significance of the PCAST report for the math community as follows: 

 “But the nature of [the PCAST] recommendations combined with the other previously 
mentioned statements from this report suggest that PCAST does not trust the mathematics  
community to get right undergraduate mathematics education either in support of other STEM 
fields or in the preparation of K-12 mathematics teachers. In this report, there is a clear sense 
of frustration that despite its central role in STEM education, the mathematics community 
appears to have been slow to rethink its undergraduate curricula or pedagogy on a truly 
national scale.” [My italics.] 
 

c. Persistence in Math Studies 
(1) David Bressoud (2013b) in his MAA Launchings entry “MAA Calculus Study: Persistence 
through Calculus” wrote [my italics]: 

“A successful Calculus program must do more than simply ensure that students who pass are 
ready for the next course. It also needs to support as many students as possible to attain this 
readiness. And it must encourage those students to continue on with their mathematics. As I 
wrote in my January 2010 column "The Problem of Persistence" Bressoud (2010h) just because a 
student needs further mathematics for the intended career and has done well in the last 
mathematics course is no guarantee that he or she will decide to continue the study of 
mathematics. This loss between courses is a significant contributor to the disappearance from 
STEM fields of at least half of the students who enter college with the intention of pursuing a 
degree in science, technology, engineering, or mathematics. Chris Rasmussen and Jess Ellis, 
drawing on data from MAA’s Calculus Study, have now shed further light on this problem. This 
column draws on some of the results they have gleaned from our data. . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 I am concerned by these good students who find calculus simply too hard. As I documented in 
my column from May 2011, ‘The Calculus I Student’  [Bressoud (2011a)], these students 
experienced success in high school, and an overwhelming majority had studied calculus in high 
school. They entered college with high levels of confidence and strong motivation. Their 
experience of Calculus I in college has had a profound effect on both confidence and motivation. 
 
The solution should not be to make college calculus easier. However, we do need to find ways of 
mitigating the shock that hits so many students when they transition from high school to college. 
We need to do a better job of preparing students for the demands of college, working on both 
sides of the transition to equip them with the skills they need to make effective use of their time 
and effort. 
 
Twenty years ago, I surveyed Calculus I students at Penn State and learned that most had no idea 
what it means to study mathematics. Their efforts seldom extended beyond trying to match the 
problems at the back of the section to the templates in the book or the examples that had been 
explained that day. The result was that studying mathematics had been reduced to the 
memorization of a large body of specific and seemingly unrelated techniques for solving a vast 
assortment of problems. No wonder students found it so difficult. I fear that this has not 
changed.  
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 (2) Benjamin Braun (2014) in “Persistent Learning, Critical Teaching: Intelligence Beliefs and 
Active Learning in Mathematics Courses” wrote [my italics]: 

“One way to create a classroom environment that cultivates malleable intelligence beliefs, 
supporting students through sequences of challenges and critical responses, is the use of active 
learning techniques. These include many well-known methods: e.g., cooperative learning, peer-
based instruction, guided discovery, and inquiry-based learning. While active learning 
techniques are not all identically effective and while they require persistence by teachers to be 
successfully applied, a growing body of evidence suggests that such methods generally have a 
positive effect on student learning and attitudes in mathematics [Laursen et al. (2011), 
engineering [Prince (2004)], and other STEM disciplines [Singer et al. (2012), Chapter 6]. 
Active learning has also been studied extensively at the K–12 level; hence these methods deserve 
attention from mathematicians teaching courses aimed at future K–12 teachers. 
 

d. Why Have Mathematicians Lagged in Undergraduate Pedagogy  
Herewith follows a Galilean Dialogue [updated and revised from “Re: Math Education Research” 
(Hake, 2003)]. According to the Wikipedia entry <http://bit.ly/1azo97y> on Gaileo's “Dialogue 
Concerning the Two Chief World Systems”: "Salviati argues for the Copernican position and 
presents some of Galileo's views directly. . . .  .Sagredo is an intelligent layman who is initially 
neutral." In the version below Salviati’s role, is taken by Hake who argues for interactive 
engagement methods†of education and Sagredo is still an intelligent layman who is initially neutral 
on educational methods.  

 
Sagredo: In what important respects is MER different from PER? 

 
Hake: It appears to me that Mathematics Education Research (MER) of quality and quantity 
comparable to that in Physics Education Research PER - [see e.g. McDermott & Redish (1999), 
Redish (2003), Heron & Meltzer (2005), Meltzer & Thornton (2012)] exists but overall: 

 
 (a) MER groups are more apt to be found in graduate and undergraduate Schools Of Education, 
while PER groups are found primarily in Physics Departments [see the listing at 
<http://www.compadre.org/per/programs/>.]. The location of PER groups in physics departments 
gives them a distinct advantage for research on undergraduate education because student subjects 
take courses in physics departments  (Redish, 1999), and physicists tend to be more knowledgeable 
in physics than are the faculty of Ed Schools. 

 
 (b) MER has yet to: 

 (1) with the exception of the Calculus Concept Inventory [Epstein (2007; 2012, 2013)] devise 
standardized tests of important concepts in undergraduate math courses (such as the Force 
Concept Inventory for  introductory mechanics) that would be useful in rigorous pre/post testing 
of thousands of students so as to access the need for and the effectiveness of reform math 
pedagogy [see “Lessons from the Physics Education Reform Effort” Hake (2002a - Lesson #3), 
Stockstad (2000)], Wood & Gentile (2003), Michael (2006)]. 

 
 (2) awaken from near total ignorance of the ground-breaking work of  Louis Paul Benezet 
(1935/36) -  see the Benezet Centre at <http://bit.ly/926tiM>. 

__________________________________________________ 
†“Interactive Engagement methods” are defined by Hake (1998a) as “those designed at least in part to 
promote conceptual understanding through active engagement of students in heads-on (always) and hands-on 
(usually) activities which yield immediate feedback through discussion with peers and/or instructors.” 
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Sagredo: As I recall, in a discussion-list post titled "Re: Math Education Research" [Hake (2003)] 
there was a Galilean Dialogue in which Hake opined that another important difference between 
MER and PER is that MER had focused more on K-12 education than on higher education. 

 
Hake: After surveying the MER literature more thoroughly – see e.g.. the present REFERENCE list 
below and the references in APPENDIX #2 "Math Education Bibliography" - I'VE CHANGED  
MY MIND!  There's been a tremendous amount of math education research on higher education of 
which I had been unaware. Nevertheless I think it should be realized that (a) colleges and 
universities supply the K-12 teachers, (b) teachers tend to teach math and science in the way they 
were taught - presently in the ineffective passive-student lecture mode - even despite all the Ed 
School methods courses pre-service teachers may take, (c) a crucial problem in K-12 education is 
the severe dearth of effective science/math teachers [PhysTec (2012), PMET (2012), AAAS (2012), 
Hake (2002b, 2011a), Meltzer, Plisch, & Vokos (2013a,b). MER seems to be late in realizing this 
problem [Jackson (2003), Lewis (2001), Cohen & Krantz (2001), Katz & Tucker (2003)]. 
 
Sagredo: OK, after scanning your reference lists, I agree that there's been a tremendous amount of 
math education research on higher education.  So why then does the PCAST Report suggest 
Undergraduate Math Course be taught by non-Mathematicians? What's so difficult about reforming 
undergraduate math education? There the professors generally have subject expertise (unlike many 
teachers in K-12). So all that's needed is to inform the professors of pedagogical methods more 
effective than the ones they're using. 
 
Hake: My 25-year stint at a large research university (typical of the locations where most  
future teachers are educated) suggests that research mathematicians are even less concerned with 
undergraduate education than research physicists, and are even more convinced than physicists that 
the lecture method is the only effective method. (It’s certainly the easiest, and after all, it worked for 
them.) In my response “Whence Do We Get the Teachers?” (Hake 2002b) to the MAA's Bernie 
Madison (2002) at a PKAL Assessment Roundtable of 2002, I opined that Sherman Stein (1997)  
<http://bit.ly/JCQbDT> hit the nail on the head [my italics]:  

 “The first stage in the reform movement should have been to improve the mathematical 
knowledge of present and prospective elementary teachers. Unfortunately, the cart of curriculum 
reform has been put before the horse of well-prepared teachers. In fact, not a single article on the 
subject of the mathematical preparation of teachers has appeared in The Mathematics Teacher 
since the second Standards volume was published. . . . [[but to be fair one should survey articles 
in other journals such as the Journal of Mathematics Teacher Preparation, and The Journal for 
Research in Mathematics Education]]. . . . Because the AMS and MAA presumably agree with 
those twelve most crucial pages . . pages 132-143 of "Professional Standards for Teaching 
Mathematics” (PSSM (1991), ". . . these organizations should persuade mathematics 
departments to implement the recommendations made there. If all teachers were mathematically 
well prepared, I for one would stop worrying about the age-old battle still raging between ‘back 
to basics’ and ‘understanding’. On the other hand, if mathematics departments do nothing to 
improve school mathematics, they should stop complaining that incoming freshmen lack 
mathematical skills.” 

 
Sagredo: Why do most mathematics departments do nothing? Certainly Stein has made a good case 
that its to their own advantage to do something. 
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Hake: I think Herb Clemens (1988) <http://bit.ly/1bPYYJ9> explained it perfectly (my italics):  
“Why don't mathematicians from universities and industry belong in math education? The first 
reason is that it is self-destructive. The quickest way to be relegated to the intellectual dustbin in 
the mathematics departments of most research universities today is to demonstrate a continuing 
interest in secondary. . .(or tertiary). . . mathematics education. Colleagues smile tolerantly to 
one another in the same way family members do when grandpa dribbles his soup down his shirt. 
Math education is certainly an acceptable form of retiring as a mathematician, like university 
administration (unacceptable forms being the stock market, EST. . .[[Erhard Seminar 
Training?]]. . ., or a mid-life love affair). But you don't do good research and think seriously 
about education.”  

(Clemens' comments apply as well to physicists and physics education.) 
 
C. Typical Calculus Course Problem – Even Dogs Can Solve It! 

                         
           Fig. 1.  Paths to a ball thrown from A on the shore to B in the water.  
                             (the  “shore” is a straight line running through A and C)  
    
A man standing at A with his dog on the edge of a straight shoreline running through points A and C, throws 
a ball that lands in the water at point B, a perpendicular distance x from point C. His dog’s running speed on 
land is r and her swimming speed in the water is s (less than her land speed r). The distance from A to C is z.  
The dog wishes to minimize the time T taken to reach the ball: 
 
                                   T = (z – y) / r  + [(x^2 + y^2)^0.5] / s  . . . . . . . . . . . . . . .(1) 
 
At what value of y is T a minimum? 
 
In “Do Dogs Know Calculus?" mathematician Tim Pennings (2003) reports the solution of the above 
problem by his:  
 

                                             
                                                Welsh Corgi dog, Elvis,  
 
who invariably follows the path A ---> D ---> B, which minimizes the time taken by Elvis to reach the ball,  
as verified by Pennings’ careful measurements!  
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D. NSF’s Calculus Reform Effort Initiated in 1987 
 Undergraduate Curriculum Development In Mathematics: Calculus  

According to “Calculus: Catalyzing a National Community for Reform” [NSF (1995)]: “From 1987-
1995, NSF invested more than $44 million dollars in calculus reform efforts. Over 350 awards were 
made during that period to a very broad spectrum of institutions.  See, e.g., Przemyslaw Bogacki's 
(2012) "Calculus Resources On-line" listing at <http://bit.ly/Je9xrk> of over 30 U.S. universities that 
took part. 

 
E. Assessments Bemoan Lack of Evidence of Improved Student Learning  

1. William Haver (1998)  
 In Calculus: Catalyzing a National Community for Reform, Haver wrote: 

 “The NSF Calculus Program has had widespread impact on Calculus courses, on introductory 
collegiate mathematics instruction, and indeed on collegiate mathematics at all levels. . . . . . 
Nationwide, content of the Calculus course has been modified to include:  
(a) substantially more applications of mathematics,  
   
(b) the use of technology to improve the understanding of concepts, to encourage the formulation of 
conjectures, and to perform calculations that are normally too difficult to do by hand, and  
 
(c) a deeper understanding of Calculus from a geometric and numerical as well as analytic point of 
view (my italics). Calculus students today are making extensive use of modem technology; 
regularly completing long-term assignments; and frequently participating actively as members of 
study groups and activity teams. Ten years ago these activities were virtually unheard of in college 
mathematics classes. . . . . . . . . It should be acknowledged, however, that some college and 
university mathematicians believe that the increased use of technology, the introduction of more 
applications, and the increased emphasis on student communication is a change in the wrong 
direction. In addition, there are others who believe that more evidence of improved student 
learning is necessary before a final decision can be made concerning the ultimate value of the 
change. ” [My italics.] 

 
2. Susan Ganter (1999) 

In “An Evaluation of Calculus Reform: A Preliminary Report of a National Study” Susan Ganter 
wrote: 

“A number of reports that present programmatic information and indicators of success in the efforts 
to incorporate technology and sound pedagogical methods in calculus courses have indeed been 
written. Reform has received mixed reviews, with students seemingly faring better on some 
measures, while lagging behind students in traditional courses on others However, these reports 
present only limited information on student learning in reform courses [my italics], primarily 
because the collection of reliable data is an enormous and complicated task and concrete guidelines 
on how to implement meaningful evaluations of reform efforts simply do not exist. The need for 
studies that determine the impact of these efforts, in combination with the increase in workload 
brought on by reform, is creating an environment of uncertainty. Funding agencies, institutions, and 
faculty require the results of such studies to make informed decisions about whether to support or 
withdraw from reform activities.” 
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F. A Glimmer of Hope† for Calculus Education:  The Calculus Concept Inventory 
     (CCI) - Development and Validation of the Calculus Concept Inventory by:   
 
 

                                                       
                                           Jerry Epstein (2007; 2012; 2013) 
 

and a panel of widely respected calculus educators* plus psychologist Howard Everson 
<http://bit.ly/Or9puu>, nationally known for development and validation of standardized tests: 

 

                                                                
                         Dan Flath                  Maria K. Robinson             Maria Terrell  
                  MacAlaster College          Seattle University                 Cornell 
 

                                                          
                     Deane Yang                      Kimberly Vincent              Howard Everson 
                  NYU Polytechnic                 Washington State            CUNY Grad Center 
 
 
 
 
 
 
 
___________________________________________________________________________ 
†Might Concept Inventories <http://en.wikipedia.org/wiki/Concept_inventory> also be a “Glimmer of Hope” 
for Higher Education generally? See, e.g., “The Physics Education Reform Effort: A Possible Model for 
Higher Education?” [Hake (2005)] and the 10,600 Google hits at <http://bit.ly/17iXpGx> on that title (on 19 
Dec 2013 08:58-0800). See also "U.S. Colleges Put Low Priority on Student Learning" [Hake (2012a)].  
 
*Mahendra C. Shah of NYU Polytechnic (deceased) is not shown.  
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Epstein (2013) wrote (see his paper for the references): “The Calculus Concept Inventory (CCI) is a test 
of conceptual understanding (and only that—there is essentially no computation) of the most basic 
principles of differential calculus. The idea of such a test follows the Mechanics Diagnostic Test and its 
successor the Force Concept Inventory (FCI) in physics, the last a test which has spawned a dramatic 
movement of reform in physics education and a large quantity of high quality research. The MDT and the 
FCI showed immediately that a high fraction of students in basic physics emerged with little or no 
understanding of concepts that all faculty assumed students knew at exit and that a semester of instruction 
made remarkably little difference. . . . . . . Mathematics education is often mired in “wars”* between 
“back-to-basics” advocates and “guided- discovery” believers. There seems to be no possibility of any 
resolution to this contest without hard, scientific evidence of what works. Such evidence requires 
widespread agreement on a set of very basic concepts that all sides agree students should—must—be 
expected to master in, for example, first semester calculus. The CCI is a first element in such a 
development and is an attempt to define such a basic understanding.” 

 
G. Typical Question§ of the CCI Type - Dogs Score at the Random Guessing Level 
           

 
 
 
 
 
 
 
________________________________________________________ 
* See “The Math Wars” [Schoenfeld (2004)]. 
 
§ From Lomen & Robinson (2004). In Socratic Dialogue Inducing (SDI) Lab #0.2, “Introduction To 
Kinematics,” online at <http://bit.ly/xIil7c>, students use an acoustic position detector to plot position x vs 
time t of their own bodies and to become familiar with the graphical relationship of x (t), v = dx/dt, and a =  
d2x/dt2.  See “A Microcomputer-Based SDI Lab Emphasizing the Graphical Interpretation of the Derivative 
and Integral” [Hake (1998c)].  
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H. Impact of the CCI on Calculus Education  
1. Pre 2013 

Epstein (2007) wrote:  
“The [CCI] shows good performance characteristics and exposes exactly what the [FCI] showed. . . 
. . . . . . . Both show that traditional instruction has remarkably little effect on basic conceptual 
understanding, and this has been the greatest shock to faculty. . . . . The most optimistic results were 
from Uri Treisman <http://bit.ly/KM0t1a>. He did not expect much, he said, because he was stuck 
with a large class of some 85 students. Nevertheless, he came in with <g> = 0.30 which is well 
outside the range of all the standard lecture based sections (0.15 to 0.23), though significantly lower 
than what was seen in physics.* Obviously the amount of data from good alternative instruction is 
far too small for any final conclusions, and the foundational question of whether teaching 
methodology strongly affects gain (on the CCI) as it does for physics (on the FCI) will have to 
await further data.” 

 
More recently Epstein (2012) wrote (paraphrasing):  

“The Calculus Concept Inventory (CCI) [has been given] to about 1000 university students in 
Shanghai, China. The classes are, I think, a bit larger than typical American calculus classes, and 
are totally teacher centered lectures. . . . . Preliminary analysis indicates that the Chinese calculus 
students are overall at the same level as the University of Michigan students. . . . . ”  
Epstein’s “at same level as the University of Michigan students” evidently means that the Chinese 
students attained about the same average *normalized* pre-to-posttest gains <g> = (<%post> - 
<%pre>) / (100% - <%pre>) – as the students reported by the University of Michigan’s Karen Rhea 
(2000) and two standard deviations above traditional U.S. first-year calculus students. . . .  

 
How could a Chinese traditional “teacher centered” course result in such relatively large <g>’s ? 
Epstein suggests it might be due to the habit of Chinese students to form after-class “study 
gangs” [Treisman (1992) Effect”] but more rigorous K-12 math preparation could also be a 
factor. 

 
2. Post 2013 

Section H1 above, from the talk “Can the Cognitive Impact of Calculus Courses be Enhanced?” of 
24 April 2012, at the University of Southern California, indicates the CCI situation as it was on that 
date.  For the present CCI picture see (a) Epstein's (2013) recent publication “The Calculus Concept 
Inventory - Measurement of the Effect of Teaching Methodology in Mathematics” in the Notices of 
the AMS of September 2013; and (b) David Bressoud's (2013a) laudatory remarks on Epstein's CCI 
in his MAA Launchings piece "Evidence of Improved Teaching."  Bressoud wrote [bracketed by 
lines “BBBBB. . . . .”; slightly edited; my italics]: 

 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB  
Last December I discussed the NRC report, Discipline-Based Education Research: 
Understanding and Improving Learning in Undergraduate Science and Engineering. . . . 
.[[Singer,  Nielsen, & Schweingruber (2012)]]. . . . One of its themes is the importance of the 
adoption of “evidence-based teaching strategies.” It is hard to find carefully collected 
quantitative evidence that certain instructional strategies for undergraduate mathematics really 
are better. I was pleased to see two articles over the past month that present such evidence for 
active learning strategies. 
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One of the articles is the long-anticipated piece by Jerry Epstein (2013), “The Calculus Concept 
Inventory—Measurement of the Effect of Teaching Methodology in Mathematics” which 
appeared in the September 2013 Notices of the AMS. Because this article is so readily available 
to all mathematicians, I will not say much about it. Epstein’s Calculus Concept Inventory (CCI) 
represents a notable advancement in our ability to assess the effectiveness of different 
pedagogical approaches to basic calculus instruction.  
 
Epstein presents strong evidence for the benefits of Interactive Engagement (IE) over more 
traditional approaches. As with the older Force Concept Inventory developed by Halloun & 
Hestenes (1985a,b), CCI has a great deal of surface validity. It measures the kinds of 
understandings we implicitly assume our students pick up in studying the first semester of 
calculus, and it clarifies how little basic conceptual understanding is absorbed under traditional 
pedagogical approaches.  
 
Epstein claims statistically significant improvements in conceptual understanding from the use of 
Interactive Engagement, stronger gains than those seen from other types of interventions 
including plugging the best instructors into a traditional lecture format. Because CCI is so easily 
implemented and scored, it should spur greater study of what is most effective in improving 
undergraduate learning of calculus. 
 
The second paper is “Assessing Long-Term Effects of Inquiry-Based Learning: A Case Study 
from College Mathematics” [Kogan & Laursen (2013)].  This was a carefully controlled study of 
the effects of Inquiry-Based Learning (IBL) on persistence in mathematics courses and 
performance in subsequent courses. They were able to compare IBL and non-IBL sections taught 
at the same universities during the same terms. . . . . . Most striking is the very clear evidence that 
IBL does no harm, despite the fact that spending more time on interactive activities inevitably 
cuts into the amount of material that can be “covered.” In fact, it was the course with the densest 
required syllabus, G1, where IBL showed the clearest gains in terms of preparation of students 
for the next course. 
 
IBL is often viewed as a luxury in which we might indulge our best students. In fact, as this 
study demonstrates, it can have its greatest impact on those students who are most at risk.  
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 
 

 
 
 
 
 
 
 
________________________________________________________ 
* The average normalized gain is defined in Hake (1998a) as <g> = (<%post> - <%pre>) / (100% - <%pre>) 
= <% Gain> / (max. possible <% Gain>). In Hake (1998a) the 48 “Interactive Engagement” introductory 
physics courses achieved <<g>> = 0.48 ± 0.14 (std dev), about a 2 std. deviation superiority to the 14 
“Traditional Courses” with <<g>> = 0.23 ± 0.04 (std dev).       
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I. Conclusion 
Q. Can the Cognitive Impact of Calculus Courses Be Enhanced? 
A. Possibly, But It May Take Several Decades. 
 
Judging from the physics education reform effort – see “The Impact of Concept Inventories On Physics 
Education and Its Relevance For Engineering Education” [Hake (2011c)]:  

 
The cognitive impact of calculus courses might be increased, especially if further effort is made to:  

 
(a) continue Jerry Epstein’s (2007; 2012, 2013) development of the CCI into a test that is  
    widely accepted as valid and consistently reliable,  
   
(b) administer the CCI to many different traditional and reform courses, and  
   
(c) subsequently meta-analyze the results.   
   2. But even then, it may take several decades before widespread improvement occurs. 

 
Epilogue 
“The academic area is one of the most difficult areas to change in our society. We continue to use the same 
methods of instruction, particularly lectures, that have been used for hundreds of years. Little scientific 
research is done to test new approaches, and little systematic attention is given to the development of new 
methods. Universities that study many aspects of the world ignore the educational function in which they are 
engaging and from which a large part of their revenues are earned.” 
        -   Richard M. Cyert, former president of Carnegie Mellon University in Tuma & Reif (1980) 
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APPENDIX #1 – The Lagrange Approach to Calculus  
Judith Grabiner (2010) in her introduction to A Historian Looks Back: The Calculus as Algebra and 
Selected Writings wrote bracketed by lines “GGGGG. . . .”:! 

GGGGGGGGGGGGGGGGGGGGGGGGGGGGG 
In The Calculus as Algebra: J.-L. Lagrange, 1736–1813, I show what Lagrange’s mathematical 
practice was like, in order to understand the genesis of the rigorous analysis of Cauchy, Bolzano, and 
Weierstrass. For Lagrange, the calculus was not about rates of change or ratios of differentials, or even 
about limits as then understood. Lagrange thought that the calculus should be reduced to “the algebraic 
analysis of finite quantities.” This sounds as though he was about to introduce deltas and epsilons. But 
instead he believed that there was an algebra of infinite series, and that every function had a power-
series expansion except perhaps at finitely many isolated points. Lagrange defined the derivative as the 
coefficient of the linear term in the function’s power-series expansion. Why he thought this was 
justified tells us both about his philosophy of mathematics and about the way many mathematicians 
practiced their subject in the eighteenth century. Euler, for example, did marvelous things by what we 
would now call the carefree formal manipulation of infinite series, infinite products, and infinite 
continued fractions. But Lagrange found something else in infinite series as well. He imported what we 
now call delta-epsilon techniques from the 18th-century study of approximations into some of his 
proofs about the  concepts of the calculus. He was the first to attempt to prove, let alone to use 
inequalities in so doing, statements like “a function with a positive derivative on an interval is 
increasing there.” He justified many results of calculus using inequalities, including the mean-value 
theorems for derivatives and integrals, and the Lagrange remainder of the Taylor series. This, and 
much more, helped build Cauchy’s work in the 1820s on the foundations of analysis.  
GGGGGGGGGGGGGGGGGGGGGGGGGGGGG 
  

See also Alain Schremmer’s (1998) “A Story Line for Calculus” and Carl Boyer’s (1959) The 
History of the Calculus and Its Conceptual Development. 
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Initial efforts in calculus reform grew from pragmatic concerns and the design of solutions was pragmatic 
as well. This approach was reflected in the publications about reform. Having designed and implemented 
a project, the people involved then communicated their ideas and shared materials with others. This 
dissemination of information was one of the ways in which the movement spread from the small 
collection of original NSF sites to other schools. People also sought out opportunities to express their 
opinions about specific projects or issues of reform more generally. To date, the vast majority of 
publications related to calculus reform are opinions or descriptions of projects, curricula and software 
where the objective is to inform others of what was done and how. Relevant examples can be found in 
Solow (1994), Douglas (1995), and Schoenfeld (1995). 

 
People were also interested in the impact that the reform projects were having on students. This led to the 
design and implementation of evaluation studies. The emphasis of these evaluations tended to be very 
pragmatic. In essence, frequently the main question asked was “Has it worked?” The specifics of how this 
question was pursued differed from project to project, but the experimental design of comparing students 
from traditional classes with students from reform classes was predominant. 
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Wynn, 1994; Bookman and Friedman, 1994.) The limitations of such comparative studies is well known 
(see, e.g., Schoenfeld, 1994). . . . .[[but the advantages are less well known – see e.g. "The Physics 
Education Reform Effort: A Possible Model for Higher Education?” (Hake, 2005)]]. . . . . . .  Comparative 
studies of this sort are poorly-suited to the study of phenomena as complex as teaching and learning. 
These studies often did a reasonable job of answering a very specific question for a particular course or 
programme, however, instructional situations are complex and differ so dramatically from project to 
project that answering a project-specific question usually cannot contribute much to our understanding of 
teaching and learning as a whole. 

 
Even if comparative methods were appropriate and we had ideal control and experimental groups, 
knowing that one group out-performed the other does not tell us what brought about the differences. 
Because of this, many of these evaluation studies are best described (in K-12 research) as a ‘pilot’ study. 
In many cases, the research identified what may be interesting phenomena but the results and conclusions 
fall short of contributing to our understanding of the processes of teaching and learning. In 
most cases, having identified an interesting occurrence (perhaps differential performance on exam 
questions by students in different courses), a study utilizing a different experimental design could be  
carried out. For example, problem solving interviews and/or observation of students’ in-class behaviour 
might generate results with explanatory power for the differences in performance. In a small number of 
cases, those methods have been used to examine research questions of a non-comparative nature. For  
examples of non-comparative studies, see Palmiter (1991); Selden, Selden, and Mason (1994); Bonsangue  
and Drew (1995); Park and Travers (1996). Unfortunately, studies that yield results with strong 
explanatory power are scarce and the comparative studies undertaken in connection with calculus reform 
have not significantly advanced our understanding of how students learn calculus and how different 
instructional circumstances influence that learning. 
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3.5 Research 
Some research on calculus has gone beyond comparative studies and evaluation of particular courses. 
Such work has not been primarily about calculus reform, but instead looked at student understanding of 
calculus concepts. This work examined student understanding in ways that have explanatory power and 
utility – the aim was not to answer some yes/no question but to explore some of the underlying 
mechanisms through which learning occurs. The researchers often made connections between existing 
research and their current research and the nature of the work also permits future researchers to build 
upon it. 
 
Research of this sort examined how student understanding of particular concepts interacts with their 
understanding of calculus. In particular, researchers examined how calculus understanding is influenced 
by student understanding of variables, functions and limits. It is accepted in much of the educational 
research community that students' understanding of one concept influences their learning and 
understanding of related concepts. In terms of calculus learning, this means that the understandings of the 
concept of a variable, functions and limits will influence the development of their understanding of 
derivatives and other calculus concepts. Research has revealed that what may appear to be weaknesses in 
students’ understanding of calculus concepts can really be just manifestations of their pre-existing 
understanding of a related concept. For example, students may understand the concept of function in ways 
that served them well in certain contexts but that are incompatible with, or do not support the 
development of, a robust understanding of derivative. Examples of this research can be found in Monk 
(1987), Williams (1991), Tall (1992), Ferrini-Mundy and Graham (1994), and White and Mitchelmore 
(1996).  
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<http://bit.ly/KPPbWq>; also online at <http://bit.ly/Mgv6IX>. Regarding undergraduate mathematics Steen 
wrote [bracketed by lines “SSSS. . . .”: 

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
Demands for relevance and accountability are no strangers to undergraduate mathematics. Indeed, 
postsecondary mathematics can be viewed as higher education in microcosm. Growth in course 
enrollments has been enormous, paralleling the unprecedented penetration of mathematical methods into 
new areas of application. These new areas–ranging from biology to finance, from agriculture to 
neuroscience–have changed profoundly the profile of mathematical practice. Yet for the most part these 
changes are invisible in the undergraduate mathematics curriculum, which still marches to the drumbeat 
of topics first developed in the eighteenth and nineteenth centuries. 

 
It is, therefore, not at all surprising that the three themes identified at the UNESCO conference are 
presaged in the Discussion Document for this ICMI Study: the rapid growth in the number of students at 
the tertiary level; unprecedented changes in secondary school curricula, in teaching methods, and in 
technology; and increasing demand for public accountability [Holton et al.  (2001)]. Worldwide demands 
for radical transformation of higher education bear on mathematics as much as on any other discipline. 
Postsecondary students study mathematics for many different reasons. Some pursue clear professional 
goals in careers such as engineering or business where advanced mathematical thinking is directly useful. 
Some enroll in specialized mathematics courses that are required in programs that prepare skilled workers 
such as nurses, automobile mechanics, or electronics technicians. Some study mathematics in order to 
teach mathematics to children, while others, far more numerous, study mathematics for much the same  
reason that students study literature or history–for critical thinking, for culture, and for intellectual 
breadth. Still others enroll in postsecondary courses designed to help older students master parts of 
secondary mathematics (especially algebra) that they never studied, never learned, or just forgot. (This 
latter group is especially numerous in countries such as the United States that provide relatively open 
access to tertiary education [Phipps (1998)]. 

 
Postsecondary students study mathematics for many different reasons. Some pursue clear professional 
goals in careers such as engineering or business where advanced mathematical thinking is directly useful. 
Some enroll in specialized mathematics courses that are required in programs that prepare skilled workers 
such as nurses, automobile mechanics, or electronics technicians. Some study mathematics in order to 
teach mathematics to children, while others, far more numerous, study mathematics for much the same 
reason that students study literature or history–for critical thinking, for culture, and for intellectual 
breadth. Still others enroll in postsecondary courses designed to help older students master parts of 
secondary mathematics (especially algebra) that they never studied, never learned, or just forgot. (This 
latter group is especially numerous in countries such as the United States that provide relatively open 
access to tertiary education [Phipps (1998)]. 
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In today's world, the majority of students who enroll in postsecondary education study some type of 
mathematics. Tomorrow, virtually all will. In the information age, mathematical competence is as 
essential for self-fulfillment as literacy has been in earlier eras. Both employment and citizenship now 
require that adults be comfortable with central mathematical notions such as numbers and symbols, 
graphs and geometry, formulas and equations, measurement and estimation, risks and data. More 
important, literate adults must be prepared to recognize and interpret mathematics embedded in different 
contexts, to think mathematically as naturally as they think in their native language [Steen (1997)]. 
Since not all of this learning can possibly be accomplished in secondary education, much of it will take  
place in postsecondary contexts–either in traditional institutions of higher education (such as universities, 
four- and two-year colleges, polytechnics, or technical institutes) or, increasingly, in non-traditional 
settings such as the internet, corporate training centers, weekend short-courses, and for-profit universities.  
 
This profusion of postsecondary mathematics programs at the end of the twentieth century contrasts 
sharply with the very limited forms of university mathematics education at the beginning of this century. 
The variety of forms, purposes, durations, degrees, and delivery systems of postsecondary mathematics 
reflects the changing character of society, of careers and of student needs. Proliferation of choices is 
without doubt the most significant change that has taken place in tertiary mathematics education in the 
last one hundred years. 
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widened dangerously, most notably when numbers and data are brought to bear in deciding public and 
private issues- and one can scarcely think of an issue in contemporary life where this is not the case.”  
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as the U.S. News and World Report.  Faculty and administrators often argue that the work of higher 
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we live in a world in which simple measures thrive, whether or not they measure anything important, or 
anything at all. One could spend a full semester plumbing the depths of the challenge posed by 
assessment of higher education.  Here I want to touch on just three particulars to illustrate my argument 
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Strauss, V. 2013. “The future of high school math education,” Washington Post, 06 Dec; online at 
<http://wapo.st/19gaF1q>.  Strauss wrote [bracketed by lines “SSSSS. . . . ”; emphasis in the original except 
where indicated]: 

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
A few weeks ago a group of senior mathematicians, teachers, statisticians, and curriculum developers met 
in Boston to discuss the future of high school mathematics, revisiting issues addressed by a 2008 
conference organized by the Center for Mathematics Education at the University of Maryland. This time, 
the Common Core State Standards was front and center of the discussion. Participants in the Boston 
meeting, sponsored by the non-profit Consortium for Mathematics and Its Applications!
<http://www.comap.com/>, formulated a set of recommendations for progressive action in the field and 
drafted an essay to explain their ideas.. . . . . . . . . . . . . . . . . . . Here’s their essay: 

Results from the most recent Program for International Student Assessment showed once again that 
U.S. high school students are in the middle of the pack when it comes to science, mathematics, and 
literacy achievement. The findings quickly elicited an outburst of public hand wringing, criticism of 
U.S. schools and their teachers, and calls to emulate the curriculum and teaching practices of high 
achieving countries.  Then, just as predictably, there were a variety of explanations why we cannot 
import the policies and practices of other quite different countries (e.g., South Korea, Taiwan, Finland, 
and Singapore).  Instead, schools were urged to redouble efforts along lines that have been largely 
ineffective for the past decade and are not common in any high performing country—a regimen of 
extensive standardized testing with mostly punitive consequences for schools and teachers that fail to 
make adequate yearly progress. . . . .[[My italics.]]. . . ..   Public attention to the challenge of 
international competition has already begun to fade and we will hear little about the meaning of the 
PISA results until the next “wakeup call” arrives. What might happen if we tried something different 
this time around?   

 
Countries that have made real progress in their performance on international assessments share several 
characteristics.  First and foremost is broad agreement on the goals of education and sustained 
commitment to change over time.   In the United States there has been steady, if modest, improvement 
in student mathematics performance at the elementary and middle school levels on the National 
Assessment of Educational Progress (NAEP) and some improvement in results on college entrance 
examination tests (SAT and ACT) over the past two decades—a period when efforts have been guided 
by the National Council of Teachers of Mathematics (NCTM) standards for curriculum, evaluation, 
teaching, and assessment. 
 
Over the past three years, 46 of the 50 U. S. states have been engaged in an effort to implement 
Common Core State Standards (CCSS) for mathematics and literacy.  With respect to mathematics, 
those standards, prepared under the aegis of the National Governors’ Association with generous private 
financial support, are in many ways an extension of key ideas in the earlier NCTM standards.  Despite 
understandable controversy about particulars of the CCSS and the processes by which they were 
developed and states were induced to adopt them, the Common Core standards provide a useful 
framework for further efforts.  . . . .[[My italics.]]. . . . Partisan political pressures (from both left and 
right) are already leading some state governors to reconsider their participation in this national 
compact to improve education—before even the first assessments of progress are reported.   But we 
believe that education policy makers and mathematics educators should resist the common wish for a 
quick fix and stay the course, modifying goals and efforts as results suggest such actions.  
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What should students, teachers, parents, and policy-makers look for in the emerging reform of high 
school mathematics?  From our perspective - as mathematicians, teachers, statisticians, teacher 
educators, and curriculum developers with extensive experience in school mathematics innovation—
there are at least four key elements of the Common Core program that provide a basis for productive 
change in U. S. high school mathematics: 

 Comprehensive and Integrated Curriculum. . . . . . A broad and integrated vision of high school 
mathematics would serve our students better than the narrow and compartmentalized structure of 
traditional programs... 
  
Mathematical Habits of Mind. . . . . . Developing important mathematical habits of mind should 
become a central goal of high school instruction, especially the process of mathematical modeling 
that is required to solve significant real-world problems.   
  
Balanced Attention to Technique, Understanding, and Applications. . . . . . . Improved 
performance on international assessments like PISA are likely to result from moves toward 
curricula and teaching methods that balance and integrate mathematical techniques, understanding, and applications. 
  
Information Technologies. . . . . . . . Improved performance on international assessments like PISA 
are likely.Personal computers, tablets, smartphones, and other computing devices will almost 
certainly transform school mathematics in fundamental ways.  Intelligent response to that challenge 
will require creative research and development efforts and the courage to make significant changes 
in traditional practices. 

 
If the content and teaching of high school mathematics are transformed in the directions we 
recommend, schools and teachers will also need new tools for assessing student learning.  One of the 
clearest findings of educational research is the truism that what gets tested gets taught.  PISA is not a 
perfect or complete measure of high school student achievement.  Neither are the TIMMS international 
assessments, the NAEP tests, the SAT and ACT college entrance exams, college placement exams, or, 
quite likely, the coming assessments attached to the Common Core State Standards. 
 
Some would respond to the inadequacy of current assessment tools by sharply curtailing high stakes 
standardized testing; others would actually increase the testing and raise the consequences for students 
and schools.  It is almost certainly true that the best course lies somewhere between those extremes.  
 We need new and better tools for assessing student learning. . . . .[[e.g., Concept Inventories 
<http://en.wikipedia.org/wiki/Concept_inventory> used in formative pre/post testing as by Epstein 
(2013)]] . . . . . , and we need to employ those assessments in constructive ways to help teachers 
improve instruction and to inform educational policy decisions. 
 
Finally, we need to change the tenor of public discourse about mathematics education. If we are to 
reach the shared goal of preparing young people for productive and satisfying lives, we need to work 
together to develop progressive goals for school mathematics and high quality instructional resources.  
Most important of all, we need to dial down the acrimonious policy arguments and relentless criticism 
of schools and teachers. Teaching is one of the most important and demanding tasks for adults in our 
society, and teachers deserve our encouragement and support as they work to provide the best possible 
life preparation for their students. . . . . .[[My italics.]]. . . .  

- Jim Fey, Sol Garfunkel, Diane Briars, Andy Isaacs, Henry Pollak, Eric Robinson, Richard 
Scheaffer, Alan Schoenfeld, Cathy Seeley, Dan Teague, Zalman Usiskin 
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Regarding the CCSS, compare the above with (a) “The Common Core State Standards” [Bressoud 
(2010i); (b) “Next Generation Science Standards: Good or Bad for Science Education?” [Hake 
(2013a)]; (c) “Mathematics and Education”  (2013)]; (d) “Engaging students in mathematics” 
[McCallum (2013) in REFERENCES]; (e) “Why I Cannot Support the Common Core Standards” 
[Ravitch (2013a); and (f) “Study supports move toward common math standards” [Schmidt 
(2012b)]. 
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