These negative energy states lead to problems when one tries to use Dirac equation to describe highly relativistic single particle dynamics (see homework problem 2). They can only be given a proper treatment in a context of a many body theory as described by relativistic fields. So let's consider a classical field theory of \(\Psi_\alpha(x,t), \Psi^\dagger_\alpha(x,t) \) \(\alpha = 1, \ldots 4 \) as 4 complex classical fields with a classical Lagrangian:

\[
L(x,t) = \frac{i}{2} \left[\overline{\Psi} \gamma^\mu (\partial_\mu \Psi) - (\partial_\mu \overline{\Psi}) \gamma^\mu \Psi \right] - m \overline{\Psi} \Psi
\]

where we have introduced the following notation:

\[
\overline{\Psi}_\alpha = \Psi^*_\beta \gamma_\beta \equiv \gamma^+ \gamma^0 = (\gamma^0 \Psi)^+ = [\gamma^0]_{\alpha\beta} \Psi_\beta
\]

Note \(\gamma_{\alpha\beta} = \delta_{\alpha\beta} \) is real. \(\overline{\Psi}_\alpha \Psi^\dagger_\alpha \)
We then have from the equations of motion, for instance

\[\frac{\partial \mathcal{L}}{\partial \dot{\Psi}} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial (\partial_x \Psi)} = 0 = \frac{i}{2} \bar{\Psi} \gamma^\mu \partial_\mu \Psi - m \Psi + \frac{i}{2} \partial_\mu \bar{\Psi} \gamma^\mu \Psi = 0 \]

and similarly when varying with respect to \(\bar{\Psi} \).

Thus the equations of motion are the Dirac equations:

\[(i \gamma^\mu \partial_\mu - m) \Psi = 0 \]

[Dirac equation]

\[\bar{\Psi} (i \gamma^\mu \partial_\mu + m) = 0 \]

We can now proceed as we did for the scalar field.

From the invariance of \(\mathcal{L} \) under space-time, symmetries derive the classical expressions for momentum, \(P_i \), energy \(H \), angular momentum \(\mathcal{J} \), in terms of the fields \(\Psi \) and \(\bar{\Psi} \).

These are given by:

\[\Theta^{\mu \nu} = \frac{i}{2} \bar{\Psi} \gamma^\mu \gamma^\nu \Psi \]

\[P_i = \int d^4x \Theta^{0i} = \int d^3x \frac{i}{2} \bar{\Psi} \gamma^0 \gamma^i \Psi \]

\[H = \int d^4x \Theta^{00} = \int d^3x \frac{i}{2} \bar{\Psi} \gamma^0 \gamma^0 \Psi \]

\[\mathcal{J} = \int d^4x \left[x^j \Theta^{0k} - x^k \Theta^{0j} + \frac{i}{2} \bar{\Psi} \gamma^j \gamma^k \Psi \right]_{i,j,k = \text{cyclic permutations}} \]
The next step would be to calculate canonical momenta and impose commutation relations to quantize the system.

Note that the canonical momentum defines through \(\frac{\partial H}{\partial p_i} \) and \(\frac{\partial H}{\partial q_j} \) are proportional to the fields themselves and not their derivatives, thus canonical quantization will involve just the fields and their \(\partial_\mu \) and \(\partial^\mu \) parts to be obtained from equations of motion. As before we want to express \(H \) and \(\bar{\Psi} \) quantum fields in such a way that the Hamiltonian, \(\hat{H} \), and \(\hat{\bar{\Psi}} \) operators are diagonal:

\[
H = \int d^3x \bar{\Psi} \left[-i \gamma_\mu \partial_\mu + m \right] \Psi \quad \text{from (*) and eq. to motion (4,*)}
\]

Let's try

\[
\Psi(x) = \int \frac{d^3p}{(2\pi)^3} \sum_{\alpha=1,2} \left[b_\alpha(p) u(\bar{\Psi}) e^{\frac{iGp}{\hbar}} + b^*_\alpha(p) \bar{u}(\Psi) e^{-\frac{iGp}{\hbar}} \right]
\]

\[
\bar{\Psi}(x) = \int \frac{d^3p}{(2\pi)^3} \sum_{\alpha=1,2} \left[b^*_\alpha(p) \bar{u}(\bar{\Psi}) e^{-\frac{iGp}{\hbar}} + b_\alpha(p) \bar{u}(\Psi) e^{\frac{iGp}{\hbar}} \right]
\]

\[
E_{\Psi} = \mathcal{E}(p) = \sqrt{m^2 + p^2}
\]
Where $b, b^\dagger, d, d^\dagger$ are some operators, λ, μ are the solutions of the Dirac equation. Note we have not yet imposed commutation relations between Ψ_α and $\bar{\Psi}_\alpha$ in the quantum theory, so we do not know what relations the operators $b, b^\dagger, d, d^\dagger$ should satisfy. The reason for that will become obvious soon.

Now calculate H:

$$H = \sum_{\alpha, \beta = 1}^3 \int d^3 \mathbf{x} \frac{\hbar^3}{(\hbar^3)^3} \left[b^\dagger_{\alpha}(\mathbf{x}) b_{\beta}(\mathbf{x}) + d^\dagger_{\alpha}(\mathbf{x}) d_{\beta}(\mathbf{x}) \right] \hbar \mathbf{x} \cdot \mathbf{v} + \mu \left[b_{\alpha}(\mathbf{x}) \Psi_{\alpha}(\mathbf{x}, p) + d^\dagger_{\alpha}(\mathbf{x}) \bar{\Psi}_{\alpha}(\mathbf{x}, p) \right] \hbar \mathbf{x} \cdot \mathbf{p}$$

$$= \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \mathbf{E}(\mathbf{p}) \left[b^\dagger_{\alpha}(\mathbf{p}) b_{\alpha}(\mathbf{p}) - d^\dagger_{\alpha}(\mathbf{p}) d_{\alpha}(\mathbf{p}) \right]$$

where we have used:

$$\mathbf{v} + \mu \mathbf{p} = 2 \mathbf{E}(\mathbf{p})$$

$$\mathbf{v} - \mu \mathbf{p} = -2 \mathbf{E}(\mathbf{p})$$

$$\mathbf{v} + \mu \mathbf{p} = \mathbf{v} - \mu \mathbf{p}$$

$$\mathbf{v} = 0$$
Now suppose the commutational relations for the fields were such that for the operators α^\dagger, α^\dagger would imply $[d\alpha(h), d\alpha^\dagger(h')] = (2\xi)^3 \delta^3(h-h') d\alpha$ i.e. just like before in the case of scalar theory.

Then

$$H = \sum_{\alpha = 1, 2} \int \frac{d^3 \mathbf{r}}{(2\pi)^3} \text{Tr} \left[\langle \hat{h}(\mathbf{r}) \rangle \left[b^\dagger_{\alpha}(h') b_{\alpha}(h) - d^\dagger_{\alpha}(h') d_{\alpha}(h) \right] \right] + \text{const}$$

and states $|\mathbf{h}, \alpha\rangle = d^\dagger_{\alpha}(h)|0\rangle$ where $|0\rangle$ is the vacuum state. $|0\rangle$: $b_{\alpha}(h)|0\rangle = d_{\alpha}(h)|0\rangle = 0$ would have negative energies and the Hamiltonian would be unbound from below \Rightarrow total collapse!!

To cure this we have to have anticommutation relations between the operators in the fermion case rather than commutation relations:

$$\{d\alpha(h), d_{\alpha'}(h')\} = \delta_{\alpha\alpha'} \delta^3(h-h') + \delta_{\alpha\alpha'}(h) d_{\alpha}(h)$$

$$= (2\xi)^3 \delta^3(h-h') d\alpha$$
Which translates into:

\[H = \sum_{\alpha = 1, 2} \frac{\hbar^2}{(2\pi)^3} E(\alpha) \left[b_\alpha^+ (h) b_\alpha (h) \right] + \text{c.c.} + \text{drop.} \]

Similarly for momentum operators:

\[p_i = \sum_{\alpha = 1, 2} \int \frac{d^3 \hbar}{(2\pi)^3} \ h^i \left[b_\alpha^+ (h) b_\alpha (h) \right] \]

and total angular momentum operator:

\[J_i = \int \frac{d^3 \hbar}{(2\pi)^3} \left[b_\alpha^+ (h) \left(L_r^r \xi + S_{r\alpha}^r \right) b_\alpha (h) \right] + \text{c.c.} + \text{drop.} \]

\[L^i = -i \hbar \frac{\partial}{\partial h^i} \]

\[= \left[\vec{x} \times \vec{p} \right]^i \]

\[\text{and} \quad S^i_{\alpha \beta} = \frac{1}{2} \sigma^i_{\alpha \beta} \text{ spin operators.} \]

Here the helicity indices defined in the following way.