IU Summer REU Research Projects in the Department of Physics
Swain Hall and Simon Hall
Here are a few examples of potential REU research projects based in the Department of Physics at Swain Hall West or nearby at Simon Hall.
Astrophysics
Kinematics of Nearby Galaxies
Prof. Liese vanZee, Astronomy
Measurement of the gas phase kinematic properties of nearby galaxies enables studies of both their gravitational potential and the connection between baryonic components (gas, stars, and dust) and dark matter halos. Students use the combination of observations of the neutral gas (from the 21cm spin-flip of neutral hydrogen) and observations of the ionized gas (from the Hydrogen Balmer-alpha line and the forbidden lines of [NII] and [SII]) to measure rotational velocities and local velocity dispersions. To measure the dark matter potential, students correct the observed rotation curve for inclination effects and decompose the rotation curve into baryonic and non-baryonic components. Students also analyze the velocity dispersion measurements to investigate whether the ionized gas is gravitationally bound to the system. These measurements provide insight into the physical conditions and evolutions of the interstellar medium in galaxies.
Atomic, Molecular, and Optical Physics
Experimental Quantum Information Processing
Prof. Phil Richerme, Physics
Individual atoms can be trapped, collected into arrays, and cooled to their quantum ground states to form a synthetic quantum material. These engineered quantum systems can be studied and reprogrammed in a well-controlled laboratory environment, allowing for investigations of quantum many-body systems that are inaccessible in real materials or through numeric simulations. Undergraduate students assist in the development of laser, optical, electronic, and vacuum systems needed to run the apparatus.
Biophysics
The Statistical Physics of Living Neural Networks
Prof. John Beggs, Physics
Cortical slices and cultures are prepared from rat and mouse brains. These simplified slice networks are placed on advanced microelectrode arrays, allowing up to hundreds of individual spiking neurons to be sampled at high temporal resolution. We borrow concepts from statistical physics (models of frustrated magnetic materials, models of avalanching systems, models of complex networks) to describe the activity we see in data sets recorded with the microelectrode arrays. Recent projects on which undergraduates have worked include measuring information flow between neurons, modeling trajectories of network activity through a simplified state space, developing maximum entropy models to describe the probability distribution of network states, applying new measures of synergy between information flows to cellular automata models and to neurophysiological data.
Visual Information Processing
Prof. Rob de Ruyter, Physics
Vision in animals, including humans, is based on an ongoing interpretation of optical signals gathered by the eye, and the physical properties of these highly complex signals put fundamental limits on visual information processing. We study visually guided behavior in a specially developed flight tracker system. The fly uses adaptive computational strategies to cope with the complexity of the visual input data stream, and we try to understand these strategies on a quantitative basis, hoping to uncover fundamental principles of biological computation.
Condensed Matter
Top-Down Fabrication of Nanostructured Materials
Prof. Shixiong Zhang
Owing to their confined dimensionality and large surface-area-to-volume ratio, nanostructured materials often possess novel physical properties that are beyond what one can achieve in their bulk counterparts. The study of intrinsic properties of these nanomaterials will depend crucially on their crystalline quality. This project will focus on the fabrication of new high-quality, single-crystalline nanostructured materials through top-down approaches where bulk single-crystals are thinned down to the nanometer scales. Through this project, REU students will develop important experimental skills in the areas of materials physics, sample growth, characterization, and nanotechnology. Since joining the Department in 2012, Prof. Zhang has mentored more than ten undergraduate students including five summer REU students.
Topological States of Matter
Prof. Babak Seradjeh
In the past decade, the theory and experimental promise of topologically ordered states has led to the discovery of several families of two- and three-dimensional topological insulators and candidate topological superconductors. The electrons in these systems are inert in the bulk yet cost vanishingly little energy to excite at the system boundaries or inside bulk defects. The student in this project will investigate aspects of model topological insulators and superconductors by employing analytical and simple numerical methods using Mathematica or Matlab, or coding in C/C++/Fortran. The problems are designed to understand the fundamental principles governing the system, their connection to experiments, theoretical techniques, and potential applications and architectures for novel devices.
Elementary Particle Experiment
The NOvA Neutrino Oscillation Experiment
Prof. Mark Messier, Physics
NOvA studies the muon-to-electron neutrino oscillation using both neutrinos and anti-neutrinos. Students will help to develop and test event reconstruction software and use the standard tools of high energy physics to simulate detector performance, analyze events from the detector, and test ideas for improvements or enhancements to the existing detectors.
Triggering proton collisions with ATLAS
Prof. Sabine Lammers, Physics
The Large Hadron Collider (LHC) is gearing up to deliver proton collisions at center-of-mass energy of 14 TeV, the highest energy of any accelerator in history. The ATLAS detector will record interesting LHC collisions in order to study a wide scope of phenomena, including weak and strong nuclear interactions, and possibly produce particles that have never been observed before. Students will design and test algorithms that are used to decide which collision events to record based on the topology of the particles exiting the collision and entering the ATLAS detector. Students can expect to learn how to use Monte Carlo simulation tools to make predictions for the performance of their algorithms and will have the possibility to analyze real data from the LHC.
Elementary Particle Theory
Theoretical Studies of Relativity Tests
Dr. Ralf Lehnert, Physics
Special relativity (SR) is one of the most basic and best confirmed theories physics. However, recent theoretical ideas in the context of new models beyond established physics suggest that there may, in fact, be the possibility of small departures from SR. Such hypothetical deviations from SR would affect many physical systems, such as the relation between energy and momentum for free particles. Predictions of this type can be employed for ultra-sensitive experimental tests of SR. This project involves modeling such deviations from SR with the goal to identify possible high-precision relativity tests. The prerequisites for research along these lines include an elementary knowledge of SR and basic undergraduate electrodynamics and quantum mechanics.
The College of Arts